机读格式显示(MARC)
- 000 01554cam a2200313 i 4500
- 008 200111s2020 gw a b 001 0 eng d
- 020 __ |a 9783658290160 |q paperback
- 020 __ |z 9783658290177 |q electronic bk.
- 035 __ |a (OCoLC)1135663949 |z (OCoLC)1135282342
- 040 __ |a EBLCP |b eng |e rda |c EBLCP |d GW5XE |d YDX
- 082 04 |a 620/.0042 |2 23
- 100 1_ |a Laube, Pascal, |e author.
- 245 10 |a Machine learning methods for reverse engineering of defective structured surfaces / |c Pascal Laube.
- 260 __ |a Wiesbaden : |b Springer Vieweg, |c 2020.
- 300 __ |a xiii, 160 pages : |b illustrations ; |c 22 cm.
- 336 __ |a text |b txt |2 rdacontent
- 337 __ |a unmediated |b n |2 rdamedia
- 338 __ |a volume |b nc |2 rdacarrier
- 490 0_ |a Schriftenreihe der Institute f眉r Systemdynamik (ISD) und Optische Systeme (IOS)
- 504 __ |a Includes bibliographical references and index.
- 520 __ |a Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures. The proposed methods aim to improve the reconstruction quality while further automating the process. The contributions demonstrate that machine learning can be a viable part of the CAD reverse engineering pipeline.
- 650 _0 |a Reverse engineering |x Data processing.
- 650 _0 |a Machine learning.